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Abstract
Kinetically grown self-avoiding walks on various types of generalized random
networks have been studied. Networks with short- and long-tailed degree
distributions P(k) were considered (k, degree or connectivity), including scale-
free networks with P(k) ∼ k−γ . The long-range behaviour of self-avoiding
walks on random networks is found to be determined by finite-size effects.
The mean self-intersection length of non-reversal random walks, 〈l〉, scales as
a power of the system size N: 〈l〉 ∼ Nβ , with an exponent β = 0.5 for short-
tailed degree distributions and β < 0.5 for scale-free networks with γ < 3.
The mean attrition length of kinetic growth walks, 〈L〉, scales as 〈L〉 ∼ Nα ,
with an exponent α which depends on the lowest degree in the network. Results
of approximate probabilistic calculations are supported by those derived from
simulations of various kinds of networks. The efficiency of kinetic growth
walks to explore networks is largely reduced by inhomogeneity in the degree
distribution, as happens for scale-free networks.

PACS numbers: 89.75.Fb, 87.23.Ge, 05.40.Fb, 89.75.Da

1. Introduction

The past few years have seen extraordinary progress in the description of real-life complex
systems in terms of networks or graphs, where nodes represent typical system units and
edges represent interactions between connected pairs of units. Such a topological description
has been applied for modelling several kinds of natural and man-made systems, and is
currently employed to study different processes taking place on real systems (social, biological,
technological, economic) [1–4]. Two highlights of these developments are the Watts–Strogatz
small-world networks [5] and the so-called scale-free networks [6], which incorporate various
aspects of real systems. In particular, they are characterized by the fact that the average
separation between sites increases with system size N not faster than log N . These complex
networks provide us with the underlying topological structure to analyse processes such as
spread of infections [7, 8], signal propagation [5, 9, 10] and random spreading of information
[11, 12].
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In the last few years, researchers have been accumulating evidence [13–16] that several
kinds of networks possess a degree (or connectivity, k) distribution given by a power law,
PSF(k) ∼ k−γ , with an exponent γ usually in the range 2 < γ < 3 [2, 17]. The origin of such
power-law degree distributions was addressed by Barabási and Albert [6], who argued that
two ingredients are sufficient to explain the scale-free character of many real-life networks,
namely: growth and preferential attachment. They found that a combination of both criteria
yields non-equilibrium scale-free networks with an exponent γ = 3.

Social networks form the substrate where dynamical processes such as information
spreading and disease propagation take place [2]. These networks have the property of
being able to find a target quickly (they are ‘searchable’) [18–20], as a consequence of their
topological characteristics. To understand several dynamical processes (diffusion, navigation,
search) on complex networks, several authors have analysed various properties of random
walks on these networks [12, 21–27]. These studies give us valuable information on dynamical
processes in real systems, in spite of the fact that actual processes are usually neither purely
random nor totally deterministic.

In contrast with unrestricted random walks, self-avoiding walks (SAWs) on a given
network cannot return to sites visited earlier in the same walk, and one can expect the latter
to be more effective for search and exploration. In fact, these kinds of walks have been used
to propose local search strategies in scale-free networks [28]. However, the self-avoiding
condition causes attrition, in the sense that a large fraction of paths generated at random have
to be abandoned because they overlap [29, 30]. This fact can limit appreciably the capability
of SAWs for exploring real-life networks.

SAWs on regular lattices have been employed for many years to model structural and
dynamical properties of macromolecules [31, 32], as well as to characterize complex crystal
structures [33] and to study critical phenomena [34]. Several universal constants for SAWs
on lattices are now well known [35]. In our context, SAWs were studied earlier in small-
world networks [36], and have been also employed to obtain the so-called L-expansions of
complex networks [37]. Recently, kinetic growth walks on uncorrelated scale-free networks
were considered, with special emphasis upon the influence of attrition on the maximum
length of the paths [30]. It was found that the average length scales as a power of
the system size, with an exponent that depends on the characteristics of the considered
networks.

Scale-free networks have a notoriously inhomogeneous distribution of degrees, and it is
not yet clear whether properties of SAWs on these networks are due to that large inhomogeneity,
or are general of (uncorrelated) complex networks with arbitrary degree distributions [38].
Here, we study kinetically grown walks on random networks with constant degree (regular
graphs) and with short-tailed degree distributions, and discuss the ‘attrition problem’ on these
networks. We obtain the number of surviving walks to a given length n by an approximate
analytical procedure, and the results are compared with those derived from simulations of
different kinds of networks. Results for networks with short-tailed degree distributions are
in turn compared with those found for scale-free networks. We note that the term length is
employed throughout this paper to indicate the (dimensionless) number of steps of a walk, as
is usual in the literature on networks [2].

The paper is organized as follows. In section 2, we give some general concepts related
to SAWs, along with definitions of the kinetic growth walks considered here. Section 3 is
devoted to study the self-intersection and attrition of growing walks in networks with constant
connectivity. The same properties are studied for walks on networks with short-tailed and
scale-free degree distributions in sections 4 and 5, respectively. The paper closes with a
discussion in section 6.
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Figure 1. Schematic diagram showing a non-reversal walk of length n = 5 on a realization of a
random graph. Open and black circles represent unvisited and visited nodes, respectively. The
non-reversal condition allows in principle for the next (sixth) step three possible nodes (denoted
A, B and C). For a non-reversal walk one chooses among nodes A, B and C. If A is selected, then
the walk stops. For a kinetic growth walk, one chooses B or C, each with 50% probability.

2. Definitions and method

A self-avoiding walk is defined as a walk along the links of a network which cannot intersect
itself. In each step the walk is restricted to moving to a nearest-neighbour node, and the
self-avoiding condition constrains the walk to occupy only sites which have not been visited
earlier in the same walk. To study several kinds of dynamic processes, such as navigation
on networks, one can consider kinetically grown walks, for which a temporal sequence is
assumed.

Here, we will consider two kinds of growing walks. The first kind will be non-reversal
walks [29]. In these walks one randomly chooses the next step from among the neighbouring
nodes, excluding the previous one. If one selects a node visited previously, then the walk
stops (see figure 1). These walks will be used to study the self-intersection length. The second
kind of walks considered here are kinetic growth walks (KGWs) [39], in which one randomly
chooses the next step among the neighbouring unvisited sites and stops growing when none are
available. These walks were employed to describe the irreversible growth of linear polymers
[39, 40], and will be used here to study the attrition length of walks on various kinds of
networks. KGWs are less sensitive to attrition than non-reversal walks, in the sense that in the
former the walker always escapes whenever a way exists (see figure 1). Note that both kinds
of walks are kinetically grown, but we use the expression ‘kinetic growth walks’ to denote
those of the second type, as usually done in the literature [39, 41]. We call ‘non-reversal
walks’ those of the first type, to emphasize the fact that the non-reversal condition is the only
restriction on this kind of walks, until they reach a node visited earlier. Both ensembles consist
of the same set of walks as SAWs, but each has a weight depending on its growth process.
In particular, for networks in which all nodes have the same degree (regular networks), our
non-reversal walks coincide with usual self-avoiding walks, in the sense that all walks of a
given length have the same weight.

To analyse the effect of inhomogeneity in the degree distribution on the characteristics
of self-avoiding walks, we will consider three kinds of networks: (1) random networks with
constant degree, (2) networks with short-tailed degree distribution and (3) scale-free networks,
with a power-law distribution of degrees. For simulations we have generated networks with
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various sizes N and mean connectivities 〈k〉. To generate a network, we first define the number
of nodes Nk with degree k, following a probability distribution P(k); second, we ascribe a
degree to each node according to the set {Nk}, and finally we connect randomly ends of links
(giving a total of L = ∑

k kNk/2 connections), with two conditions: (i) no two nodes can
have more than one bond connecting them and (ii) no node can be connected by a link to
itself. All networks studied here contain a single component, i.e. any node in a network can
be reached from any other node in a finite number of steps. For a given kind of network,
having fixed the parameters defining the degree distribution, we considered several network
realizations, and for a given network we took randomly the starting nodes for the walks. In
each case considered, the total number of walks amounted to 5 × 105.

In general, for a given length n, the number of different SAWs on a network changes with
the starting node. We will call sn the average number of SAWs of length n, i.e. the mean value
obtained by averaging over the network sites and over different network realizations. For
Erdös–Rényi (ER) random graphs with Poissonian distribution of degrees, one has srd

n = 〈k〉n
[36]. For walks of length n � N in generalized random networks, one has [30]

sn = 〈k〉
( 〈k2〉

〈k〉 − 1

)n−1

. (1)

It is known that the number of SAWs on regular lattices scales for large n as sn ∼ n�−1µn,
where � is a critical exponent which depends on the lattice dimension D and µ is the so-called
connective constant. For D > 4, one has � = 1 [29, 35]. The connective constant can be
obtained from the large-n limit of the ratio sn/sn−1, which in general depends on n. This
ratio becomes independent of n for random networks when the system size N → ∞. This
happens because for large N the probability of finding loops with n′ � n in an n-step walk
is negligible, and the self-avoiding condition does not impose in practice any restriction on
non-reversal walks. Thus, for large N the connective constant µ∞ for random networks is
µ∞ = 〈k2〉/〈k〉 − 1. (Note that µ∞ diverges for diverging 〈k2〉, as happens for scale-free
networks with γ � 3.) For finite networks, however, there appear loops of any size [42], and
sn will be lower than given by equation (1). These finite-size corrections will be of order n/N

for n/N � 1. The effects of this reduction in the number of non-reversal and kinetic growth
walks on random networks will be considered in the following sections.

3. Regular random networks

Here, we consider random networks with constant connectivity k > 2. These are the so-called
regular graphs, in which all nodes have the same degree [43]. Regular graphs with k = 2
are made up by a set of disjointed rings, and will not be considered here. Regular random
networks have been employed for modelling disordered systems, such as spin glasses [44, 45].
We consider first this class of networks, since for them the probabilistic calculations presented
below are somewhat simpler than for networks with dispersion in the degree distribution.

3.1. Self-intersection length

To study the probability of a walk intersecting itself, we consider non-reversal walks that stop
when they reach a node already visited in the same walk. The number of steps of a given walk
before intersecting itself will be called self-intersection length and will be denoted as l.

In order to obtain the mean self-intersection length of non-reversal walks, we will calculate
first the conditional probability pn of a visited node being found in step n + 1, assuming that
the walk has in fact reached step n (1 � n � N). After n steps, the number of visited nodes
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Figure 2. Schematic representation of a kinetically grown walk on a network with constant
connectivity (k = 6). A black circle indicates the starting node and labels show the step number.
For each visited node (apart from the first and the last one), there remain k − 2 links which have
not yet been used in the walk.

is n, and that of unvisited ones is N − n. Thus, the number of ends of links connected to
visited and unvisited nodes is v = (k − 2)n and u = k(N − n), respectively. This is due to
the fact that a visited node has k − 2 possible links to reach it, as two of its connections are
not available because they were employed earlier: one for an incoming step and one for an
outgoing step (see figure 2). Hence,

pn = v

v + u
= (k − 2)n

kN − 2n
. (2)

Then, one has

pn = w
n

N
+ O

([ n

N

]2
)

, (3)

with w = (k − 2)/k. In the following, only terms linear in n/N will be retained.
Let us now consider M0 non-reversal walks starting from nodes taken at random, and call

M1(n) the number of walks surviving after n steps (i.e., those which did not arrive at any node
visited earlier). Then,

M1(n) − M1(n + 1) = pnM1(n), (4)

which can be solved by iteration with the initial condition M1(0) = M0. An analytical
expression for M1(n) can be found by dealing with n as a continuous variable x, and writing
a differential equation for M1(x):

dM1

dx
= −w

N
xM1, (5)

so that, for integer n:

M1(n) = M0 exp
(
− w

2N
n2

)
. (6)

In figure 3, we show the fraction of remaining walks, M1(n)/M0, as a function of n for
networks with different connectivities. Dashed lines were obtained by using equation (6) and
solid lines correspond to results of simulations. The agreement between both sets of results
is good, and we observe that it is better the larger the connectivity (k increases from right
to left).

The probability distribution R(l) for the self-intersection length l, given by R(l) ≡
[M1(l) − M1(l + 1)]/M0, is therefore

R(l) = pn

M1(l)

M0
= wl

N
exp

(
−w

2

l2

N

)
, (7)

which gives the probability of a walk returning to a visited site in step l. With this probability
distribution we obtain the average self-intersection length:

〈l〉2 ≈ πkN

2(k − 2)
. (8)

For the dispersion in the self-intersection length of the walks, one has from equation (7)
σ 2

l = CkN/(k − 2), with a constant C = 2 − π/2 ≈ 0.43.
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Figure 3. Fraction of non-reversal walks that survive after n steps, without intersecting themselves.
Results are plotted for regular random networks with different degrees and size N = 20 000 nodes.
From left to right: k = 10, 6, 4 and 3. Solid and dashed lines indicate results of network simulations
and analytical calculations, respectively.

3.2. Attrition length

We now consider KGWs that stop when they arrive at a node (called hereafter blocking node)
in which they cannot continue because all neighbouring nodes have been already visited. The
number of steps of a given walk until being blocked will be called attrition length of the walk
and will be denoted by L.

We will calculate the mean attrition length of KGWs, and obtain its asymptotic dependence
for large system size N. With this purpose, we will derive a probability distribution for L, in a
manner similar to that used above for the self-intersection length. The probability of a KGW
reaching a blocking node in step n is that of finding a node for which all its links except one
(employed for an incoming step) connect it with nodes previously visited. Then, the average
number N ′ of blocking nodes is given by the binomial distribution

N ′ = kNpk−1
n (1 − pn) ≈ kNpk−1

n , (9)

where pn (�1) is the average fraction of links joining a node with nodes visited in a walk,
as given in equation (3). Since there is one link leading to each possible blocking node, the
probability qn of finding one of these nodes in step n + 1 is qn = N ′/Nend, where Nend is the
average number of possible ends of links at step n + 1. This number is Nend = kN − kn,
because for each visited node one has k unavailable ends of links. Hence, for n � N we have
Nend ≈ kN and qn ≈ pk−1

n .
We now consider M0 kinetic growth walks and use the probability qn to calculate the

number M2(n) of surviving walks to length n. M2(n) can be obtained from the difference

M2(n) − M2(n + 1) = qnM2(n), (10)

which gives the number of walks finishing at step n. Dealing with n as a continuous variable
x, we have a differential equation:

dM2

dx
= −

(w

N

)k−1
xk−1M2, (11)
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Figure 4. Mean attrition length 〈L〉 as a function of system size N for regular random networks
with different degrees. Symbols represent simulation results: squares, k = 3; circles, k = 4;
triangles, k = 6; diamonds, k = 10. Error bars are less than the symbol size. Lines indicate results
of analytical calculations.

with w = (k − 2)/k (see above). Then, for integer n we have

M2(n) = M0 exp

[
−

(
n

x0

)k
]

, (12)

and M2(n)/M0 gives the probability of surviving to length n. Here, x0 is a constant
characteristic of the considered networks, given by x0 = k[N/(k − 2)]1−1/k .

Consequently, the probability distribution Z(L) for the attrition length of these walks,
given by Z(L) ≡ [M2(L) − M2(L + 1)]/M0, is

Z(L) = qL

M2(L)

M0
= pk−1

L exp

[
−

(
L

x0

)k
]

. (13)

From this distribution, we obtain a mean attrition length

〈L〉 ≈ x0�

(
k + 1

k

)
, (14)

where � is Euler’s gamma function. Thus, the dependence of 〈L〉 on N for large systems is
controlled by x0. Indeed, x0 ∼ Nα , with an exponent α = 1 − 1/k ranging from α = 2/3 for
k = 3 to α = 1 for large k (k → ∞).

The mean attrition length is plotted in figure 4 as a function of system size N for several
connectivities k. The lines were obtained by using equation (14), and symbols are data points
derived from simulations (k increases from right to left). The approximate expression (14)
predicts values of 〈L〉 close to the actual ones for this kind of network. Note that for a given
size N, 〈L〉 increases as k rises. However, for the mean self-intersection length presented
above, 〈l〉 decreases for rising k.
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4. Random networks with short-tailed degree distribution

Classical random networks are the well-known ER random graphs, with Poissonian distribution
of degrees [43]. This means that the degree distribution is short-tailed, since it decreases for
large k as 1/k!. These networks contain nodes with k = 0 (isolated nodes) and with k = 1.
Isolated nodes are never reached in a walk, unless they are the starting node, in which case
the walk cannot proceed. This is not a major problem, as it is equivalent to a renormalization
of the number of walks. However, nodes with k = 1 behave as culs-de-sac for KGWs. In
fact, a KGW arriving at a node with connectivity k = 1 cannot continue, even though it has
not yet intersected itself. For this reason, we will consider networks similar to ER graphs, but
with the minimum degree k0 > 1. In particular, they will have the following distribution of
degrees:

Psh(k) = λk−k0

(k − k0)!
e−λ (15)

for k � k0 and Psh(k) = 0 for k < k0. Such a connectivity distribution can be realized by
distributing first Nk0/2 links in such a way that each node has k0 connections (as for networks
in the previous section) and then linking pairs of nodes with a certain probability a. This
probability is related with the parameter λ by a = λ/(N − 1), as in ER graphs. For k0 = 0,
we recover ER graphs with a Poissonian distribution of degrees.

4.1. Self-intersection length

To calculate the mean self-intersection length of non-reversal walks, we will proceed in
a way similar to the case of regular random networks, but taking now into account the
presence of nodes with different degrees. We consider first nodes with a given connectivity k.
The probability Q(k) of arriving at a node with this degree is proportional to k, i.e., Q(k) =
kP (k)/〈k〉, where 〈k〉 is a normalization factor. Then, the average number of nodes with
degree k visited in an n-step non-reversal walk is

Vk = nQ(k), (16)

and the mean number of nodes yet unvisited is Uk = Nk − Vk , or

Uk = NP(k) − nQ(k). (17)

Thus, the number of ends of links connected to visited and unvisited nodes with degree k is
(k − 2)Vk and kUk , respectively (see figure 2). Therefore, the conditional probability pn of
finding a visited node with any degree in step n + 1 (assuming that the walk actually reached
step n) is

pn =
∑

k(k − 2)Vk∑
k[(k − 2)Vk + kUk]

. (18)

Inserting here expressions (16) and (17) for Vk and Uk , we obtain

pn = n

〈k〉
〈k2〉 − 2〈k〉
〈k〉N − 2n

. (19)

For n � N , one can approximate to order n/N :

pn ≈ w
n

N
, (20)

with

w = 〈k2〉 − 2〈k〉
〈k〉2

. (21)
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Figure 5. Fraction of non-reversal walks that survive after n steps, without intersecting themselves.
Results are plotted for random networks with lowest degree k0 = 2 and λ = 4 and several system
sizes. From left to right: N = 104, 4 × 104, 105 and 2 × 105. Solid and dashed lines correspond
to results of network simulations and analytical calculations, respectively.

This expression is general for random networks. A particular case is that of regular networks
with connectivity k, for which w = (k − 2)/k (see above). For the distribution Psh(k), we
have 〈k〉 = λ + k0 and 〈k2〉 = λ + (λ + k0)

2. Then, to have w > 0 it is sufficient λ > 1 or
〈k〉 > 2. We note that the inequality 〈k2〉 − 2〈k〉 > 0, which gives w > 0, is a necessary
condition to have a giant component in a network [46].

To calculate the probability distribution for the self-intersection length l, we proceed as
in the previous section, from equation (4) to equation (7). In particular, for the number of
surviving walks M1(n) we find the same expression (6) with w given in equation (21). The
fraction of surviving walks M1(n)/M0 is shown in figure 5 for networks with λ = 4, k0 = 2,
and several system sizes, with N increasing from left to right. Dashed and solid lines indicate
results of analytical calculations and network simulations, respectively. For the mean self-
intersection length we find

〈l〉2 ≈ πN

2w
, (22)

which is a generalization of equation (8) to random networks with arbitrary distribution of
degrees. This mean value scales with system size as 〈l〉 ∼ N1/2, regardless of the details
of the degree distribution (here, parameters k0 and λ). These details affect the parameter w

appearing in equation (22), but not the functional form.

4.2. Attrition length

We will now calculate the mean attrition length of KGWs, and obtain its asymptotic dependence
for large system size N, similarly to the case of regular random networks treated in section 3.2.
For a given degree k, the average number Uk of unvisited nodes in an n-step walk is given by
equation (17). Among these nodes, the number N ′

k of possible blocking nodes (those with
k − 1 unavailable links and one available connection) is given by the binomial distribution:

N ′
k = kUkp

k−1
n (1 − pn), (23)
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where pn is the average fraction of links joining a node with visited nodes, as given in
equation (20).

For each possible blocking node there is one (incoming) link available for the walk.
Then, the probability of finding one of these nodes in step n + 1 is

qn = 1

Nend

∑
k�k0

N ′
k, (24)

Nend being the average number of possible ends of links for step n, given by Nend =
〈k〉N − n〈k〉Q (the subscript Q indicates average with the distribution Q(k), as nodes with
degree k are visited with probability Q(k) ∝ kP (k)).

For large enough N (small enough pn), whenever Nkp
k−k0
n � Nk0 , one has N ′

k � N ′
k0

.
If this inequality is true for all k > k0, then the probability qn can be approximated to order
n/N as

qn ≈ N ′
k0

〈k〉N (n � N), (25)

with N ′
k0

≈ k0Nk0p
k0−1
n . In such a case, the calculation of the number M2(n) of walks surviving

to length n is greatly simplified, since one can write the difference given in equation (10) as a
differential equation:

dM2

dx
= −T xk0−1M2, (26)

with the network-dependent parameter T = Nk0k0w
k0−1/(Nk0〈k〉) and w given in

equation (21). Following as above in section 3.2, we find for the probability distribution
Z(L) of the attrition length:

Z(L) = T Lk0−1 exp

[
−

(
L

x0

)k0
]

, (27)

where x0 is a constant characteristic of the considered network, given by x
k0
0 = k0/T . The

shape of this distribution coincides with that found earlier for uncorrelated scale-free networks
[30]. In fact, it is general for random networks verifying equation (25), and reduces to
equation (13) in the case of networks with constant degree, by inserting the appropriate
expressions for x0 and T. The distribution Z(L) is strongly dependent on the lowest degree
k0, because nodes with this degree control in fact the maximum length of KGWs in these
networks. Note that contrary to non-reversal walks, the length of KGWs studied here can
be in some cases on the order of the network size N, and then the condition n � N leading
to equations (25) and (26) may not be fulfilled. In such a case, one has to employ the general
expression for qn given in equation (24) and iterate equation (10).

The distribution Z(L) gives a mean attrition length

〈L〉 ≈ x0

k0
�

(
1

k0

)
, (28)

� being Euler’s gamma function. Thus, for a given lowest degree k0, the dependence of 〈L〉
on N for large systems is controlled by x0. To obtain the asymptotic dependence of x0, we
note that the parameter T behaves as N1−k0 for N → ∞, and therefore x0 and 〈L〉 increase
for large N as N1−1/k0 . Expression (28) is similar to that found for the mean attrition length
in regular random networks (equation (14)). In fact, the latter is a particular case of the
former, i.e., it corresponds to a short-tailed degree distribution with λ = 0 (in this case
Psh(k) = δk,k0 ).
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Figure 6. Mean attrition length 〈L〉 as a function of system size for random networks with
minimum degree k0 = 3 and different values of λ. Symbols indicate simulation results: squares,
λ = 0; circles, λ = 4; triangles, λ = 10. Error bars are less than the symbol size. Solid lines were
obtained by iteration of equation (10) with the probability qn given in equation (24). Dashed lines
correspond to the asymptotic large-N limit given by equation (28).

Shown in figure 6 is the mean attrition length 〈L〉 versus system size N for networks with
k0 = 3 and three λ values. Results derived from network simulations (symbols) follow closely
those yielded by using the probability qn in equation (24) to iterate equation (10) (solid lines).
Dashed lines correspond to equation (28), which is the asymptotic limit for 〈L〉 at large N. For
λ = 0 (regular random networks with k = 3), it is indistinguishable from the solid line. For
λ > 0, one observes that the larger λ, the larger N required for convergence between solid and
dashed lines. This occurs because values of N required for equations (25) and (28) to be valid
increase with λ. In any case, equation (28) describes correctly the large-N limit of the mean
attrition length, which for k0 = 3 displays the dependence 〈L〉 ∼ N1−1/k0 = N2/3.

5. Scale-free networks

We now consider equilibrium scale-free networks with degree distribution PSF(k) ∼ k−γ .
They are characterized, apart from the exponent γ and the system size N, by the minimum
degree k0. Kinetically grown walks on this kind of network have been studied earlier [30].
Here, we will only give the main results for the sake of completeness and comparison with
those presented above for networks with constant degree and short-tailed degree distribution.
One expects that the large inhomogeneity of connectivities present in scale-free networks can
affect significantly the long-range behaviour of KGWs.

5.1. Self-intersection length

For uncorrelated scale-free networks, the self-intersection length of non-reversal walks can
be calculated by using the expressions given in section 4.1, which are general for random
networks with arbitrary degree distribution. In particular, the mean 〈l〉 is given by equation (22),
with w = (〈k2〉 − 2〈k〉)/〈k〉2. For scale-free networks, 〈l〉 depends on the system size and on
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Figure 7. Mean self-intersection length 〈l〉 versus mean connectivity for different kinds of networks
with size N = 64 000 nodes. Symbols represent results of simulations: squares, regular random
networks; circles, random networks with short-tailed degree distribution (k0 = 3); triangles, scale-
free networks with k0 = 3 and several γ values (between 2 and 5, from right to left). Dashed lines
were obtained from equation (22) with the parameter w corresponding to each network.

the exponent γ of the degree distribution through the mean values 〈k〉 and 〈k2〉, but does not
change significantly with k0 [30]. Depending on the value of γ , one finds different trends for
w and 〈l〉 as functions of the system size. For large N and γ > 2, w ∼ 〈k2〉 and the mean
self-intersection length scales as 〈l〉 ∼ (N/〈k2〉)1/2. For γ > 3, 〈k2〉 converges to a constant,
and then 〈l〉 ∼ √

N , as for networks with short-tailed degree distributions.
In figure 7, we compare the mean self-intersection length for different kinds of networks,

all with the same size N = 64 000 nodes. In this figure, we have plotted 〈l〉 as a function of
the mean connectivity 〈k〉 for regular random networks (squares), networks with short-tailed
degree distribution Psh(k) (circles) and scale-free networks with several values of the exponent
γ (triangles). For Psh(k) and PSF(k), the lowest degree was assumed to be k0 = 3. Dashed
lines correspond to calculations carried out by using equation (22) (or its particular case,
equation (8), for regular networks). Note that for the distribution Psh(k), the change in 〈k〉 is
obtained by varying the parameter λ in equation (15), whereas for PSF(k) one has to change γ

when keeping constant N and k0.
As commented above, 〈l〉 decreases as 〈k〉 rises. For a given 〈k〉, results for short-tailed

degree distributions are slightly lower than those for regular random networks. This decrease
is more appreciable for scale-free networks, especially for large 〈k〉. For constant size N,
this is basically due to an increase in 〈k2〉 as 〈k〉 is raised. In practice, the decrease in 〈l〉 is
associated with the presence of nodes with large k, which are visited more frequently. Once
visited, they are more effective to limit the length of a walk than nodes with low k.

5.2. Attrition length

For the attrition length of kinetic growth walks in uncorrelated scale-free networks one can
use the formulae presented in section 4.2. In particular, equation (25) can be applied as soon
as n � N , because in these networks Nk0 > Nk for k > k0. Then, the mean length 〈L〉 can be
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Figure 8. Mean attrition length 〈L〉 as a function of mean connectivity for different kinds of
networks with size N = 64 000 nodes. Symbols represent results of simulations: squares, regular
random networks; circles, random networks with short-tailed connectivity distribution (k0 = 3);
triangles, scale-free networks with k0 = 3 and γ ranging from 2 to 5. Dashed lines were obtained
by iteration from equation (10) with the probability qn given in equation (24).

approximated by equation (28) with the network-dependent parameter x0, which controls the
behaviour of 〈L〉 for large N. To obtain the asymptotic dependence of x0, we note that Nk0/N

converges to a constant for large N. For γ > 2, w ∼ 〈k2〉, and therefore x
k0
0 ∼ (N/〈k2〉)k0−1.

Thus, for γ > 3, with 〈k2〉 converging to a finite value as N → ∞, the mean attrition length
scales as 〈L〉 ∼ N1−1/k0 , which coincides with the result for networks with short-tailed degree
distribution. In the limit of large k0, we have 〈L〉 ∼ N , i.e., KGWs can continue without
being blocked until reaching a length on the order of the system size.

Shown in figure 8 is the mean attrition length versus mean connectivity 〈k〉 for the same
networks considered in figure 7, with a size N = 64 000. In this case, differences between
results for different kinds of networks are larger than for the self-intersection length (note
the logarithmic scale for 〈L〉 in figure 8). In general, for fixed N and 〈k〉, dispersion in the
connectivity distribution (i.e., increase in 〈k2〉) entails a decrease in 〈L〉, as observed for the
three kinds of networks considered here. If we look at the change of the mean attrition length
with 〈k〉, we find for networks with short-tailed degree distribution (including those with
constant degree) that 〈L〉 increases as 〈k〉 rises. For these networks, increasing 〈k〉 makes less
probable the appearance of blocking nodes (an escape way is more easily found), and KGWs
can continue further.

For scale-free networks, however, 〈L〉 decreases as 〈k〉 is raised for constant network
size. This is a consequence of the fact that an increase in mean connectivity is associated
with a decrease in the exponent γ (results shown as triangles in figure 8 correspond to
scale-free networks with γ ranging between 5 and 2, from left to right). The large degree
dispersion in scale-free networks, and the concomitant appearance of nodes with connectivity
much larger than the average value 〈k〉, causes an increase in 〈k2〉 and in consequence a
decrease in 〈L〉. This decrease is not observed for the short-tailed degree distributions studied
above, since in this case the number Nk0 of nodes with the lowest degree is reduced very fast
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for increasing 〈k〉. In fact, one has Nk0/N = e−λ versus a much slower reduction of Nk0 with
lowering γ in scale-free networks. Since nodes with degree k0 are most efficient to block
KGWs, we observe a change in the trend of 〈L〉 shown in figure 8, when passing from short- to
long-tailed degree distributions. This means that the inhomogeneity of the degree distribution
is crucial for determining the maximum length of KGWs in random networks.

6. Discussion

Self-intersection and attrition lengths in generalized random networks have been calculated
by using an approximate probabilistic method, which gives results in line with those derived
from network simulations. Both the average self-intersection length and attrition length scale
as a power of the system size N. For the different kinds of networks considered here, the mean
self-intersection length of non-reversal walks increases for large system size as 〈l〉 ∼ Nβ ,
with an exponent β which depends upon the degree distribution. For short-tailed and scale-
free distributions with γ > 3 we find β = 0.5, and this exponent decreases for power-law
degree distributions with γ < 3. Note, for comparison, that in regular lattices the mean self-
intersection length 〈l〉 has a finite value, independent of the system size (assumed to be large
enough) [29]. This is of course due to the presence of loops. Random networks, however, are
locally tree like, and 〈l〉 is controlled by the system size.

The length of KGWs is limited by attrition of the paths. For uncorrelated networks of
large enough size, the mean attrition length 〈L〉 increases with system size as 〈L〉 ∼ Nα , α

being an exponent which changes markedly with the minimum degree k0. For short-tailed
and scale-free distributions with γ > 3, we find α = 1 − 1/k0. For scale-free networks with
γ < 3, the exponent α is lower, and the efficiency of KGWs to explore random networks, as
measured by the number of visited sites, decreases for decreasing γ . This is a consequence
of the inhomogeneity of the degree distribution present in scale-free networks, which in fact
reduces the capability of KGWs to explore them effectively. This low effectivity is expected
to be even lower for nonequilibrium scale-free networks, such as those proposed by Barabási
and Albert [6]. In these networks, the clustering coefficient is much larger than in uncorrelated
networks, and one has many more small-size loops than in the networks studied here. This
means that in growing nonequilibrium networks the mean self-intersection and attrition lengths
will be lower.

A characteristic of SAWs usually studied in regular lattices is the mean-squared end-to-
end distance, which scales for large length as n2ν , ν being a dimension-dependent critical
exponent [29, 35]. For D > 4 one has ν = 1

2 , as for unrestricted random walks [47]. For
random networks, a true distance is not defined and we consider an end-to-end separation
for KGWs, the separation between two nodes being defined as the number of links along the
shortest path connecting them. Then, the mean-squared end-to-end separation of KGWs on
random networks scales as n2 in the thermodynamic limit, i.e., with an exponent ν = 1 [30].
This exponent coincides with that corresponding to SAWs for D = 1, because loops become
irrelevant in random networks for N → ∞ (they become tree like). However, note that
this behaviour is not obtained for KGWs on finite networks, for which the mean end-to-end
separation converges for large n to a constant on the order of the mean separation between
nodes [30].

Another long-range property of SAWs is the connective constant µ. As mentioned above,
the number of SAWs on regular lattices scales for large n as sn ∼ n�−1µn, where γ depends
on the lattice dimension D and � = 1 for D > 4 [29, 35]. For random networks, we
find sn ∼ µn

∞, indicating that � = 1, the same exponent as for regular lattices in many
dimensions. This contrasts with the exponent ν = 1 discussed above for the mean-squared
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end-to-end separation, which coincides with that for D = 1, and indicates an important
difference between random networks and regular lattices in what refers to KGWs. In fact, the
absence of loops in random networks, for N → ∞, makes the end-to-end separation equal
to n, as for a linear lattice. However, for the number of KGWs (and the connective constant
µ), random networks behave as regular lattices in the limit D → ∞, where loops, although
present, become irrelevant for many purposes.

In summary, kinetic growth walks are well suited for exploring the long-range topology
of networks. In the limit of large random networks, the characteristics of these walks can
be related with those known for regular lattices. However, finite-size effects are found to be
crucial to understand long-range features of KGWs on finite random networks. Inhomogeneity
in the degree distribution reduces appreciably the attrition length of these walks, in particular
for scale-free networks with exponent γ � 3. This reduction is expected to be even larger for
nonequilibrium scale-free networks than those of Barabási–Albert type.
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